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A Monte Carlo program for photon transport using analogue
sampling of scattering angle in coherent and incoherent scattering
- processes

Jan Persliden

Department of Radiation Physics, Linkdping University, The Medical School, S-581 85 Linképing, Sweden

A computer program was developed for the Monte Carlo simulation of photon transport. The program was designed for
photon transport simulation in geometries occurring in diagnostic radiology and especially for the investigation of
scattered radiation. A method is described for the analogue sampling of scattering angle in coherent and incoherent
scattering processes. The two scattering processes are treated separately, and the influence of coherent scattering, an
often neglected process, can be estimated quantitatively. The program can also be used for the calculation of the energy
imparted to water slabs and fluorescent screens.
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1. INTRODUCTION The transport program presented in this paper

was written for some special applications in di-
The Monte Carlo program described in this agnostic radiology (i.e., photon energies < 300
paper was developed for the investigation of keV) and is small and easy to handle.

scattered radiation in diagnostic radiology; its gen-

eration in the patient (simulated by water slabs)

and subsequent absorption in detectors of varying 5 INTERACTION PROCESSES
thicknesses and atomic composition (usually con-

{aining elements of high atomic number). The geometry in the generation of scattered
The Monte Carlo method for simulating photon radiation in the patient or imaging detector etc is
transport was initially applied to neutron-photon illustrated in fig. 1. The X-ray photons enter the
radiation shielding problems. The basic principle medium in a parallel or divergent beam. They may
of the technique was described by Fano, Spencer be monoenergetic Of polyenergetic. The photons
and Berger [1]. Carter and Cashwell published a interact with the electrons of the material. The
review [2] of the Monte Carlo method as applied interactions considered are the photoelectric pro-
to particle transport. Reaside [3] cited examples of cess and the incoherent and coherent scattering
the Monte Carlo method in medical physics. A processes.
recipe for simulating photon transport in X-ray In the photoelectric process the incoming pho-
diagnostics was given by Alm Carlsson [4]. ton is absorbed and a photoelectron emitted. Sub-
Several large computer codes have been devel- sequently, there is emission of low energy Auger
oped for general neutron and coupled electrons and/or characteristic X-ray photons.
neutron—photon  transport simulations; €.8. There is a competition between the occurrence of
MORSE [5}, MCNP [6] and TRIPOL1 II [7}. the two subsequent processes as given by the fluo-
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Fig. 1. Geometry used in the Monte Carlo simulation of photon
transport in an investigation of scattered radiation. Two singly
scattered photon paths and one multiply scattered photon path
are illustrated by arrows. The radiation emanates from a point
source.

rescence yield. The fluorescence yield for a partic-
ular atomic shell is the probability that a char-
acteristic X-ray photon is emitted in filling a
vacancy in that shell with an electron from an
outer shell. In general, the fluorescence yield is
higher the higher the energies of the emitted X-rays.
For instance, the K-fluorescence yield in wolfram
is 0.96 while it is only 0.036 in aluminium. The
photoelectric process is the dominant process in
water below a photon energy of 26 keV and below
470 keV in a high atomic number material such as
wolfram. A photoelectron having an energy of 300
keV (the maximum energy for the photons consid-
ered in the program) has a range of only 0.8 mm in
water and can be considered as absorbed at the
site of emission. Characteristic X-rays generated in
water are of very low energies (< 0.5 keV) and can
also be considered to be absorbed at the site of
emission. In materials of high atomic number, the

fluorescence yield is so high and the characteristic
X-rays are so energetic (e.g., the K, X-rays in
wolfram have a mean energy to 59 keV) that their
subsequent transport in the medium has to be
considered.

Above 26 keV in water and above 470 keV in
wolfram incoherent scattering dominates. Incoher-
ent scattering is a process in which the incident
photon transfer energy and momentum to an elec-

“tron. The photon changes its direction of motion

and proceeds with degraded energy. At primary
photon energies which are high compared to the
electron binding energies, the assumption that the
electron is free is a good approximation [8]. The
Klein—-Nishina differential cross-section valid for
free electrons [8] can then be used. At photon
energies which are low compared to the electron
binding energies, the binding of the electrons to
the atom should be considered ([8]. The
Klein~Nishina differential cross-section per elec-
tron is then multiplied by the incoherent scattering
function S(x, Z) to obtain the differential in-
coherent scattering cross-section per atom [8]. Here
x = sin(8/2)/A, where 8 is the scattering angle, A
is the incident photon wave length and Z is the
atomic number of the material. The function
S(x, Z) increases monotonically from S(0, Z)=0
to S(ec, Z)=2Z, [8]. In water, the incoherent
scattering cross-section is 97% of the Klein-
Nishina cross-section at 60 keV and 72% at 10
keV. In a high atomic number material such as
lead, the corresponding figures are 86% and 31%
for photons of 100 keV and 10 keV energy, respec-
tively [9].

In coherent scattering, the incident photon
changes direction but does not lose appreciable
energy since its change of momentum is trans-
ferred to the whole atom. Coherent scattering is
the dominant scattering process below 13 keV'in
water and below 100 keV in wolfram. The dif-
ferential scattering cross-section per atom is given
by the product of the classical Thompson scatter-
ing cross-section per ¢electron and the square of the
form factor, F(x, Z), [8] where x and Z have the
same meaning as above. The form factor decreases
monotonically from F(0, Z)=2Z to F(e, Z)=0
and consequently the coherent scattering cross-sec-
tion peaks in the forward direction. The peaking

Fod



;) |

increases with increasing photon energy and with
decreasing atomic number.

3. PROCEDURES FOR SAMPLING COHER-
ENT AND INCOHERENT SCATTERING
ANGLE

The sampling of the scattering angle from the
appropriate probability distribution is the most
crucial step in the Monte Carlo transport program.

It is common to neglect coherent scattering [10].
This may be justified in many situations. However,
in diagnostic radiology the neglect of coherent
scattering is a poor approximation |1 1,12].

Efforts have been made to treat the coherent
scattering process adequately in Monte Carlo
transport calculations in diagnostic radiology:

Dance [13] used the rejection technique (cf. Ap-
pendix 2) to sample a scattering angle from the
total (incoherent plus coherent) scattering
cross-section. After selection of scattering angle,
the type of scattering was sampled from the
relative frequency of incoherent and coherent
scattering at the sampled scattering angle. This
method works well above 10 keV for media of
low atomic number such as water. However, in
materials of higher atomic number or at lower
photon energies coherent scattering pre-
dominates, and the efficiency of the rejection
technique is low. In CaWQ, the efficiency is
only 0.3 at 50 keV.

Chen et al. [14] treated incoherent and coherent
scattering separately. They sampled from the
Klein-Nishina cross-section and the classical
Thompson scattering cross-section and cor-
rected for the use of incorrect scattering cross-
sections by applying a weight factor to the
photon. This method has the disadvantage of
impairing the statistical precision of the result,
.as the weight factors may be large.

Kalender [15] sampled the scattering angle from
the total (incoherent plus coherent) scattering
cross-section. The range of the scattering angle
was then divided into a number of intervals in
which the frequency function was approximated
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by a linear function. The sampling was then
made with the distribution function method (cf.
Appendix 3). The energy of the scattered pho-
ton was determined from the Compton equa-
tion and hence the possibility of a photon being
scattered without energy loss was neglected.
The program could easily be extended to sep-
arate between incoherent and coherent scatter-
ing according to the procedure used by Dance
[13].

In this work the angles of incoherent and coher-
ent scattering are sampled with a method de-
scribed by Carter and Cashwell [2]. Both the rejec-
tion and the distribution function techniques (see
Appendices 2 and 3) are exploited. The sampling
is according to the frequency functions (analogue
sampling), and weight factors are avoided. For low
atomic number material it is as effective as the
method of Dance [13] and for materials of high
atomic numbers more effective. The scattering
processes are treated completely separately from
each other, and the effect of coherent scattering
can easily be analyzed [16]. The procedures for
sampling the scattering angle are treated in detail
in section 4.4, the complete program is described
in sections 4.1-4.3.

4. COMPUTATIONAL METHODS
4.1. The random number generator

In the sampling procedure true random num-
bers p should be used. They should be uniformly
distributed on the interval [0,1]. Instead of true
random numbers, pseudorandom numbers are
usually used in computer calculations for practical
reasons.

The random number generator used here is a
multiplicative, congruential pseudorandom num-
ber generator for a 32-bit computer. It is incorpo-
rated in the CERN Program Library [17] and has
been described by James [18). The multiplicative
factor was changed so that the random number
period increased from just over 20 X 10® to over
536 x 106,

The random number generator was tested by
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calculating

1 N i N
— —— 2
N L piand L Pi-

i=] i1

The mean of 10 series with N = 10° was for

N .
% Y p, 0.4999 with a standard deviation of 0.0003

im=1

and for

N
—}V Y p?0.3325 with a standard deviation of 0.0003.

i=1

The generator passed a x2-test, that is, the hy-
pothesis that the random numbers are uniformly
distributed could not be rejected on the 0.25 level.

4.2. Interaction cross-section tables

The interaction cross-sections (the total scatter-
ing cross-section o = 0;,.on + Oon the coherent
scattering cross-section o, and the photoelectric
cross-section 7 in units of cm™') were tabulated
for each keV from 1-300 keV. The cross-sections
for the incoherent scattering were taken from
Hubbell et al. [19], for the coherent scattering from
Hubbell and @verbe [20], and for the photoelectric
interaction from Storm and Israel [21}, and were
interpolated exponentially. Cross-sections for the
water molecule were obtained by summing the
cross-sections for two hydrogen and one oxygen
atom.

4.3. The random sampling of photon trajectories

4.3.1. Energy, entrance point and direction of mo-
tion for the primary photon

The photon energy is sampled from a known
energy spectrum with the rejection technique. En-
ergy spectra covering a range of X-ray tube accel-
erating potential differences between 40-130 kV
were taken from Reiss and Steinle [22]. A coordi-
nate system (the laboratory system) is oriented on
the medium in which the photons travel, with the
z-axis perpendicular to its surface and pointing

into it. The photons enter the medium either in a
parallel beam or in a divergent beam, the central
ray in both cases being perpendicular to the
medium surface (cf. fig. 1).

A. Parallel beam

The photons can enter the medium in a pencil
beam at the origin of the coordinate system (x =y
=z =0) or in a rectangular or circular beam.

The coordinates (x, y) of the entrance point in
a rectangular field are sampled from two random
numbers, p, and p,, as

x =X (1= 201) | Somn (1)
= 1= 202) Rovvdien o (2)
z=0
where x,,,, and y,., determine the field size.

For a circular field, the distance r from the
origin of the coordinate system to the entrance
point is determined as:

P = Pt (4)

and the azimuthal angle ¢ as:
¢ =2mup, (5)

where p, and p, are random numbers and r,,,,, the
radius of the field.

B. Divergent beam

The photons emerge from a point (isotropically
emitting) source at a distance f from the origin of
the laboratory coordinate system. The direction of
the emitted photon in the laboratory system is
given by eq. (6):

§2 = (sin 0 cos &, sin @ sin ¢, cos §) (6)

where 8 and ¢ are polar and azimuthal angles,
respectively.

In most situations a fixed field area (collimated
beam) is considered. The frequency function for §



may then be written:

sin 646
= 7
8(6) I —cosé,,, ()
where 6. is the maximum angle allowed by the
field dimensions,
The angle 4 is sampled by:

6 =arc cos[1 - p(1 — cos Omax)] | (8);

where p is a random number. The azimuthal angle
¢ is sampled from €q. (5) and the direction of
motion is given by eq. (6).

The value of r, the distance from the origin of
the laboratory coordinate system to the entrance
point (cf. fig. 2), is:

r=f-tan §=r. tan(arc cos[l = p(1 - cos 0max)])

(9)

The coordinates of the entrance point can now
be calculated.

For a rectangular field, the circular field is
extended to the diagonals of the rectangle and the
photons entering outside the rectangle are rejected.

The eq. (1-4) and (9) are given for a slab
geometry, but can be extended to other media
configurations.

R
To 0
r

Fig. 2. lllustration of the connection between the polar angle 8
of the direction of motion and the distance , of the entrance
point, 7, from the origin, O, of the coordinates in the labora-
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4.3.2, Pathlength travelledq before interaction

After determining the photon energy, its en.
trance point and direction of motion, the path-
length p travelled before interaction s sampled
from the frequency function:

/(p)=p(hv)e-utms (10)

Using the distribution function method, a random
number p is drawn and is:
P P 0<J<]

= ~In(p)/u(hv)

where p(hv) is the linear attenuation coefficient
for the material at photon energy hv. When the
pathlength p exceeds the medium thickness d, in
the photon’s direction, the photon is registered as
a transmitted primary photon. A new trajectory is
started. If p < 4, an interaction occurs,

4.3.3. Type of interaction gt the interaction point
The type of interaction at a particular photon
energy (h») is sampled according to the relative
frequency of photoelectric absorption T(hw),
incoherent scattering o, (h»), and coherent
scattering o, , (hv). A random number p is drawn,
If: .
pST(hD) . ' (]2)
r(hy)

a photoelectric absorption occurs.

If:

S T(hv) + Oon(Av)

n(hv) (%)

incoherent scattering occurs;

and if;

7(hv) 'r(hv)+acoh(hv)
k(i) =P ST )

(14)

coherent Scattering occurs,

In the case of photoelectric absorption, the
random walk is terminated and a pew one is

tH—> 22
L4
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started, unless characteristic X-rays are emitted
with such high energy that they have to be incor-
porated into the photon transport. The emission of
characteristic X-rays is given by the fluorescence
yield, defined in section 2. If a characteristic X-ray
is emitted, its direction of motion is given by eq.
(6) with the azimuthal angle sampled from eq. (5)
and the polar angle sampled from eq. (7) with
6.« = 7. The characteristic X-ray then enters the
program in 4.3.2. Auger electrons are considered
as absorbed at the site of emission. If a scattering
process occurs, values for 8, (polar angle) and ¢,
(azimuthal angle) of the scattering are sampled
from the appropriate frequency functions; sam-
pling of g, is described in section 4.4. and ¢, is
determined according to eq. (5).

When the scattering is incoherent the energy h»’
of the scattered photon is taken as the Compton
energy:

hv' = hv/[1+(hv/myc?)(1 = cos 6)] (15)

where:

mgyc” = the energy equivalence of the electron
rest mass (511 keV);

and

0 = the scattering angle.

The small energy broadening of the incoher-
ently scattered photons [12] is thus neglected.

4.3.4. Relation between spatial coordinates of
successive interaction poinis

The sampled scattering angles, 6, and ¢,, are
defined with respect to a coordinate system in
which the incident photon’s direction of motion
forms the polar axis. The scattered photon’s direc-
tion of motion, expressed in the coordinates of the
laboratory system, is given by the recurrence for-
mulae (e.g., [4]):

cos §,,, = sin 6, cos ¢, sin §, + cos §, cos 6,  (16)

.
Sin(d,,, — ;) = — oot & (17)

sind,,,

cos 8, —cos b, cos @,

cos(¢,.1 — ¢,) = (18)

sing,siné,,,
where:

#, and ¢, are the polar and azimuthal angles,
respectively, before the n-th scattering and 6,
and ¢,,, after. p,,, is the pathlength travelled
between the n-th and the (n + 1)th interaction and
the relationship between the spatial coordinates
(X, Yor 2,) a0d (X, 15 Vos 15 2,+1) Of these interac-
tions is given in the laboratory system by:

xn+l=xn+pn+] sin 0"+]C05¢"+| (19)

Ya+15 0 +pn+l sin 0n+l Sin ¢n+l (20)

INITIATE PHOTON
TRAJECTORY

P TO INTERACTION
POINT (X,Y.Z)

DIFFERENTIATION
AND ACCUMULATION

TO TABLES OF
RESULTS

Fig. 3. Flowchart of the main steps in the Monte Carlo
program.



z =zn+pn-+| cos 011+l (2])

n+1

4.3.5 Photon trajectory termination

The photon trajectory is continued until the
photon is absorbed or escapes from the medium.
In the latter case it is classified according to en-
ergy, direction of motion, and spatial coordinates
when leaving the medium.

A new trajectory is generated until the prede-
termined total number of trajectories is reached.

The final result is presented as the plane fluence
and the plane energy fluence differential with re-
spect to photon energy, direction of motion, and
site of escape. Plane fluence is the number of
photons passing per unit area of the slab in the
slab geometry. The plane energy fluence is the
total energy of the photons passing per unit area
(e.g., [23]). The main steps in the program are
shown in the flowchart (fig. 3).

4.4. Sampling of scattering angle in incoherent and
coherent scattering

4.4.1. Incoherent scattering

The differential atomic cross-section for in-
coherent scattering in an angle interval dé around
@ is given by:

doincoh(hy9 0, Z) _ doKN(hV, 0)

a6 ag  <Sx.2)

(22)

where doyn(hv, 8)/d8 is the free electron
Klein-Nishina differential cross-section per elec-
tron:

) (B b

dé hy hy'
X 27 sin 8 (23)
with
ro = classical electron radius (=2.8 X 1075 m)
hv = incident photon energy
hv’ = Compton scattered photon energy

6 = polar scattering angle in the photon coordi-
nate system

121

S(x, Z) is the incoherent scattering function [8],
the correction for electron binding.

To sample a scattering angle from this distribu-
tion one uses a generalization of the rejection
method [2]. One normalizes the distribution and
writes:

doincoh(hy! 0! Z)/d0
oincoh(hy9 Z)

_ Smax(x’ Z)OKN(hV)
oincoh(hy)

S(x, Z)
(x,Z)

> dUKN(hv, 0)/d0
axn(hv)

doyn(hv, 8)/d6
oxn(hv)

S

max

S(x, Z)

= C(hv) X (x.2)

S,

max

(24)
where S, .. (x, Z) is the maximum value of the
function S(x, Z). The function is monotonically
increasing with increasing x. For a given value of
the incident photon energy, this maximum value
equals the value S(x.,,,Z) for x_, =1/A,

do., (8)
incoh /o

de incoh

m L [}
z

Fig. 4. The frequency function [d6;,.on(8)/d8]/0;con for
incoherent scattering of a 50 keV photon in water (solid line).
The histogram gives the result of the sampling procedure used
in the program based on 100000 accepted angles. The free
electron Klein-Nishina frequency function is given as a dotted
line.
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(x =sin(8/2)/X), at 8§ = 7. Then, one samples a
scattering angle 6 from the normalized
Klein—Nishina distribution [dey(kv, 8)/d8)/
oy n(Av) using the method of Kahn [24] (see Ap-
pendix 1). An additional random number p is
drawn and the value § for the scattering angle is
accepted provided p < S(x, Z2)/S,,..(x, Z); if not
the value is rejected and the procedure starts again
by sampling from the Klein—Nishina distribution.

The function S(x, Z) is approximated by poly-
nomials of degree 4 or 5 in different x-intervals. In
fig. 4 the frequency function [do;,.,.(8)/d8]/
O;,con 18 shown for an incident photon of energy
50 keV in water (solid line). The histogram gives
the results of the sampling procedure used in the
program based on 100000 accepted angles. As can
be seen, the agreement is good. The free electron
[doyn(8)/dB] /oy is also given (dotted line) to
demonstrate the influence of the incoherent
scattering function S(x, Z).

4.4.2. Coherent scattering

The differential atomic cross-section for coher-
ent scattering is given by:

do.on(hv, 8, Z) _ dor,(8) x
dé T

Fix,Z) | (25)

where F(x, Z) is the atomic form factor and
do1y(6)/d8 is the classical Thompson differential
scattering cross-section given by:

dor,(8) _rd
_oldh;_) = %‘l(] + c0520)277 sin (26)

The differential cross-section for coherent
scattering peaks strongly in the forward direction
(small scattering angles #; cf. fig. 5). The peaking
increases with increasing photon energy. The rejec-
tion technique in the sample for a scattering angle
in coherent scattering becomes inefficient. At this
point, a technique with a transformation of varia-
bles [2] is used to obtain a more efficient proce-
dure.

The probability that the photon is coherently
scattered into the polar angle interval d§ around 4

Fig. 5. The frequency function [do,,,(8)/d6]/0.,, for coherent
scattering of a 30 keV photon in water (solid line). The histo-
gram gives the resuit of the sampling procedure used in the
program based on 100000 accepted angles. The frequency
function for Thompson scattering is given as a dotted line.

is given by:

do,,,(hv, 8, Z)d6

8)dé =
p( ) ocoh(hy’z)

_ f‘i (14 cos?8)F*(x, Z)2 sin 8d6
.2 acoh(hy’z)

(27)

The variable 6 is exchanged for the variable x?
where x = sin(#/2) /A and since:

dx? in( 8 2

d’; = d( Sm(}\/z) ) /40 = sin §/2)* (38)
one gCtSZ

p(x?)dx?=p(6)dé

2, 202
=_r_0__1r____(1 + cos?8)
acoh(hv’ Z)

X F(x, Z)dx? (29)




One can now introduce the functions:

A(x2, Z)=/X2F2(x, Z)dx? (30)
0
and
XZ
A(x2,,0 2Z) =f meF2(x, Z)dx? (31)
A :

where x_,, = 1/A for 8 = 7.
One may then write p(x?)dx? as follows:

r027r4)\2fx'2““F2(x. Z)dx?
0

2 2 _
p(x )dx ocoh(hv’ Z)
2
X(l+;os 0)]:2()(,2)
/ [F7F(x, 2)dx" (32)
0
or as:

p(.xz)dx2=C(hv,Z)Xg(ﬂ)xf(xz,Z) (33)

Now, f(x?, Z) is a frequency function and g(8)1is
bounded, 0 < g(#) < 1. One samples a value x?
from the distribution of f(x?, Z) using the distri-

TABLE 1
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bution function method, and obtains a value of (]
from the relation x = sin(4/2)/A. A random num-
ber p is drawn, and if p < g(#), 8 is accepted as
polar scattering angle; if not, another x?2 value is
sampled. This is done for a specified atomic num-
ber Z, and a specified photon energy hv. Conse-
quently, C(h», Z) can be considered to be a con-
stant. In fig. 5, the frequency function
[do,,,(0)/d8]/0,,, is compared with results ob-
tained using the sampling procedure; here for a
photon energy of 30 keV in water. Another ad-
vantage of the method, apart from yielding a high
sampling efficiency (see table 1), is that for a given
atomic number Z the photon energy hv and the
scattering angle # can be combined into the single
variable x = sin(8,/2)/A. This means that for each
material it is sufficient to calculate the distribution
function f(x2, Z) once and to use it for ail photon
energies. The distribution function
A(x2, 2)/A(X2,,,, Z) is calculated from:

A(xz,Z)=fx2F2(x,Z)dx2
0
=fx2F2( x?, Z)dx?
0

=fo’F2(fz, Z)dt (34)

with numerical integration. The inverse of the

The efficiency (Eff.) and time for sampling a scattering angle as functions of photon energy

Kahn's method This work
Incoherent scattering Coherent scattering
Energy Eff. Time Eff. Time Eff. Time
(keV) (ms) (ms) (ms)
10 0.59 1.12 0.49 2.16 0.40 1.44
20 0.59 1.05 0.53 2.01 0.62 1.07
40 0.59 1.05 0.55 1.92 0.81 0.91
60 0.58 113 0.57 1.87 0.88 0.87
100 0.59 1.12 0.58 1.70 0.94 0.83
150 0.59 1.04 0.59 1.66 . 0.96 0.82
200 0.59 1.11 0.59 1.62 0.97 0.82
300 0.61 1.08 0.61 1.59 0.98 0.81




124

distribution  A(x?, Z)/A(x2,., Z) is approxi-
mated by polynomials and stored in the program,

4.4.3 Sampling efficiency

The efficiency in accepting a scattering angle is
defined as the quotient between the number of
accepted angles and the number of sampling trials.
The efficiency in sampling scattering angles, using
the above procedures, and the time needed to
generate an acceptable value for the scattering
angle are shown in table 1 as functions of photon
energy. The corresponding values with Kahn's
method for sampling from the Klein-Nishina dif-
ferential cross-section are also given.

5. SAMPLE RUN

The first page of the output from the program
is shown in fig. 6. Figure 7 shows the first of 10
tables following the first page. The first 5 of the 10
tables give values of plane fluences of scattered
photons transmitted through a slab, the 5 follow-
ing ones present corresponding values of plane
energy fluences. The scattered photons transmitted
through the slab are divided into 4 groups char-
acterized by the value of the cosine of their angle
of emergence with respect to the normal of the
slab: 1 (1-0.968), 2 (0.968-0.866), 3 (0.866-0.669),
4 (0.669-0). In each group of 5 tables, the first 4
tables are identical in structure but distinguish
between photons in the 4 groups. The values of
plane fluences in fig. 7 are for the photons in
group 1 and are differentiated with respect to the
distance from the center of the incident beam
(columns marked 0-1 cm, 1-2 c¢m and up to
12-13 cm) and with respect to photon energy
(rows marked 0-5 keV, 5-10 keV etc.). The values
tabulated give values of A°N /A AAhvAQ; i, give
for the intervals of the distance, the photon energy
and the direction of motion the number of pho-
tons passing per unit area (44 =mr?, | —ar?)
and per unit intervals of energy and solid angle,
and are given in units of cm~2-keV~!-sr=!. The
lower rows at each energy interval (fig. 7) give the
estimated relative standard deviation for the val-
ues obtained. The 14th column marked > 13 gives

MONTE CARLD ANALOG METHOD,SPECTRUM 70 KV
NATERSLAB-THICKNESS= 20, ©o

NUMBER OF GENERATED RANDOM MALKS NH= 100000

TOTAL NUMBER OF TRANSM.SCATTERED PHOTONS= 2611

TOTAL NUMBER OF TRANSM. PRIMARY PHOTONS= 651,000

TOTAL TRANSHITTED PRIMARY ENERGY= 33079.586 kev

TOTAL NUMBER OF PHOTOELECTRIC EFFECTS= 77258
TOTAL NUMBER OF INCOHERENT SCATYERING PROC.: 185884

TOTAL NUMBER OF COHERENT SCATTERING PROC,= 32057

Fig. 6. First page of the output from the Monte Carlo program.

the sum of all photons passing at a distance r > 3
cm from the center of the beam in units of keV - .
sr™!. The last column gives the total number of
scattered photons transmitted through the slab in
units of keV~'-sr~!. The last row, denoted sum,
gives the number of photons transmitted irrespec-
tive of energy; in units of cm™2- s~ for the first
13 columns and in units of sr™! for the last two
columns. Finally, the fifth table presents values of
A’N/AAAhy; ie., the number of photons trans-
mitted per unit intervals of area and energy irre-
spective of their directions of motion. When plane
energy fluence is considered, as in the last five
tables, the photons transmitted are multiplied by
their energies. Instead of the number of photons,
N, one gets the energy AE of the photons. Values
of 8’E/A AAhvASR are given in units of cm =2 sr~ |

6. ENERGY IMPARTED

The program has been used to estimate the
energy imparted [25,26] to water slabs [16], related
to the radiation risk to the patient in X-ray
examinations [27]. The energy imparted to a
medium is easy to obtain by small modifications in
the program. All that has to be done is to register
the total incident energy of the photons on to the
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SOLID ANGLE CLASS 1g= 1
0-1 TH 1-2-0H 2-3 T 3-40H 4-5 1y 36 TN 6-7CH 7-p Cf B-9 CH 9-10 cH 10-11 11413 p2-13 NI s

0- 5 KEV .OOOE*O0.000E+00.000E+00.000E*O0.000E#O0.000E*O0.000[#00-0005*00.000E+00.000E+00.000E#O0.000E600.000E*O0.000E#O0.000E*OO
00000000 . po0p 0000 0000 0000 -0000 0000 0pgo 0000 0000 0000 0000 0000 0000

3-10 KEV .OOOE*O0.000E*O0.000E¢00.000E+00.000{*00.0005+00.000E000.0005*00.0005*00.000EOO0.000E*O0.000E+00.000E#00.000E*00.000[+00
0000 0000 0000 ,0000 0000 -0000 0000 0000 00000000 . popg 0000 0000 0000 0000

10-15 KEV .OOOE*O0.000E*O0.000E*O0.000[*00.000[*00.000E000.000E+00.000E000.000E*O0.000E*O0.000E*O0.000EOO0.000E*O0.000E#O0.000E*OO

15-20 KEv .000E000:000E+00:OOOE*OO.'000E#00:OOOE+00:000E+00:000E+00.000E+00:OOOE*OO:OOOE*OO_..OOOMO:oogEfoo:000E600:000E+00:000E+00
20-25 KEV .ooomo.ooomo.'ooonoofoooaop.'ooomo.'ooonoo.'ooonoo.ooosooo.'ooozfoo.'ooonoo.'ooomo.'ooosfoo:ooonoo.'oooEooo:oooE+oo
25-30 KEY .1915401.ooguoo.'ezss-or.'ooo£+oo.'ooouoofooogwo.'ooomo.'zxzz-ot.'ooomo.'ooomo.'ooosooo.'ooosooofogomo.'ooosooo.1oo£ooz
$0-35 KEV . 700E401, 2026400, 1276400, 2735400 000 400, O00E+00, 4B9E-01,000E+00 1570 167E-01. 152601 27701, 55p-; 000E+00. 430E402

15-40 KEV .146[402.636E+00.127E*00.318E000.354E-01.289E-01.4895-01.424E-01.936E-01.167E-01.606E-01.1385-01.509E-01.IOOEf01.890E+02
1474 4082 7074 3780 1,0000 1.0000 0707071 a4y 1.0000 5000 1.0000 5000 1,0000 1060
40-45 KEV .210E+02.530E*00.255E000.182E+00.106[#00.57BE-01.Z4SE-01.849E-01.374E-01.167E-01.303E-01.l]8£-01.000€+00.1005*01.106E*03
3L 472 5000 5000 L5774 0m 1.0000 5000 070 L0000 L7074 1.0000 0000 1.0000 0974
43-50 KEV .207E*0?.530€*00.636E-01.000E+00.141E*00.289E-01.499E-01.424E-01.374E-01.000E+00.152E-01.0005#00.000E*00.100E*01.8605*02
1280 4472 10000 0000 ,5000 1, 0000 J071 . 0m 70710000 1.000p +0000 0000 1.p000 1078
30-55 KEV .143E*02.530E400.1915*00.9095-0[.707E-01.000E400.2455-01.000E*00.000E900.167E~01.OOOEfOO.OOOE#OO.000E+00.000E#00.5905002
AL 47 sy 07870710 o000 1,0000 .900p -0000 11,0000 0000 0000 0000 .0pog 1302
35-40 Kev .121E602.313E000.1915*00.455E-01.354E-01.289[-01.245E~01.OOOE*OO.000E*00.OOOE*OO.000E+00.000{400.000E000.000E000.480E402
1822 58 574 1.0600 1.0000 1.0000 1.0000 0000 0000 .0000 .000p 0000 0000 0000 1443
60-45 KEY .573E+01.318[+00.000£*00.455E-Ol.000E#00.0005*00.000E*O0.000E400.000E#O0.000E+00.000E*00.000E+00.000E+00.000E+00.2205&02

. . . 0000 0 . . . . . 0000 2
65-70 Kev .127E*01.212E*00.636£-01.455£-01.000E*O0.000E000.000E900.0005400.000EfO0.000EOO0.000E000.000E+00.0005000.0005*00.8005401

SUN .4935*03.1645‘02.541E001.500E401.1945*01.723E+00.110E401.954E000.936E#00.3355*00.606E#00.277E+00.382£#00.150E*02.235£*04
0568 1796 2425 2323015 L up AL I « % S TP 3000 3538 5000 A0B2 5774 p4s

Fig. 7. Second page of the output from the Monte Carlo Program. giving the firg table of resulis, The table js described in section 5.

slab and to subtract the energies of the transmitted mulate the resu]ts with 1120 rea] numbers in each.
primary photons as well as the €nergies of the In this form, singly and multiply scattered trans.
scattered photons escaping from the slab, mitted photons are separated as well as back-

7. HARDWARE AND SOFTWARE SPECIFI- 1120 elements are.required. If the plane errergy
CATIONS fluence is not needed, the 4 matrices are reduced
to 2. In each simu]ation, tables are read for the

The program is written in FORTRAN 1V. The Cross-section data and for the Spectrum used. There
Program was run on a SE[L 32/77 computer with are 4 tables with 300 values in each, and for the
32 bits wordlength. It has also been run on g Spectrum 2 tables with a maximum of 390 valyes
DEC-10. The largest program required 160 kBytes are used. The'running time is directly dependent
for the SEL computer memory organisation, on the number of photon trajectories, For 100000
Another measure of the program’s requirements: photon trajectories the running time was |6

there is in the largest form 16 matrices to acey- min/43 s on the SEL computer,
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8. PROGRAM AVAILABILITY

The program is available from the author.
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APPENDIX 1

Kahn’s method of sampling scattered photon energy
Jrom the free-electron Klein-Nishina distribution

Kahn’s method [24] of sampling a scattered
photon energy h»’ from the free electron



Lhv hv 20+ 1
Yeggr =l iap, YR T ora,
€0sf =1 -0ty - 1)

cosB-l-sz

ACCEPT cosh

}

hv' = hy.y”

Fig. Al. Flow-chart of Kahn’s method of sampling scattered
photon energy from the Klein-Nishina differential scattering
cross-section.

1

Klein-Nishina differential scattering cross-section
is described without proof in the flowchart shown
in fig, Al.

Notations: a = hv/myc?, where hv is the incident
photon energy and mgc? is the energy equivalent
of the electron rest mass. Three random numbers
Py, p, and p; must be used.

APPENDIX 2

The rejection method

When sampling a value x, from a given
frequency function f(x) the rejection technique
can be used (for details, see [2,4]).

Let f(x) be a bounded frequency function on the
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f(x)}

e m—m — o — 4

x1=a+o1 (b-a)
a b X

Fig. A2. Nlustration of the rejection technique of sampling
from the frequency function J(x) using two random numbers
Py and p,.

interval [a,b]:

f*(x)=—fo)—

sp /(%) (A2.1)

where
/bf(x)dx =1

and sup f(x) is the maximum value of the func-

tion f(x).

Draw two random numbers p, and p,. Calculate:

(A2.2)

x,=a+p,(b~a) (A2.3)
If
o </*(x1) (A2.4)

X, can be accepted as a sample value; if not, x, is
rejected. The method is illustrated in fig. A2. The
sampling efficiency (section 4.4.3) is given by:

[ (x)ax
Sampling efficiency = —aﬁ
—a

b f(x)
=fa sup f(x)
(b-a)
_ 1 (A2.5)
(b—a) sup f(x)
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APPENDIX 3
The distribution function method

Sampling from a normalized frequency function
f(x), where the inverse of the distribution func-
tion is obtainable, can be performed using the
distribution function method. The case with a
continuous frequency function f(x) will be consid-
ered. .

Let f(x) be a continuous normalized frequency
function on the interval [a,b]. The distribution
function F(x) is then:

F(x) =f 7(x")dx’ (A3.1)
Drawing a random number p and making:
F(x)=p (A3.2)
yields

x=F'(p) (A3.3)

1 »

a x(p) b x

Fig. A3. Tllustration of the gdistribution function method of
sampling from the frequency function f(x) using one random
number p.

where F~' is the inverse of F. The method is
illustrated in fig. A3 above. The efficiency of this
method is 1, because each random number gives
an accepted value.
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